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Abstract—In medical image segmentation, specialized com-
puter vision techniques, notably transformers grounded in at-
tention mechanisms and residual networks employing skip con-
nections, have been instrumental in advancing performance.
Nonetheless, previous models often falter when segmenting
small, irregularly shaped tumors. To this end, we introduce
SMAFormer, an efficient, Transformer-based architecture that
fuses multiple attention mechanisms for enhanced segmentation
of small tumors and organs. SMAFormer can capture both
local and global features for medical image segmentation. The
architecture comprises two pivotal components. First, a Syner-
gistic Multi-Attention (SMA) Transformer block is proposed,
which has the benefits of Pixel Attention, Channel Attention,
and Spatial Attention for feature enrichment. Second, addressing
the challenge of information loss incurred during attention
mechanism transitions and feature fusion, we design a Feature
Fusion Modulator. This module bolsters the integration between
the channel and spatial attention by mitigating reshaping-induced
information attrition. To evaluate our method, we conduct
extensive experiments on various medical image segmentation
tasks, including multi-organ, liver tumor, and bladder tumor
segmentation, achieving state-of-the-art results. Code and models
are available at: https://github.com/lzeeorno/SMAFormer.

Index Terms—Transformer, Tumor Segmentation, Medical Im-
age Segmentation, Feature Fusion, Attention Mechanism

I. INTRODUCTION

Medical image segmentation tasks based on artificial intelli-
gence play a crucial role in clinical adjunctive therapy. This is
because the failure to diagnose tumors at an early stage often
leads to the advancement of cancer [1] , rendering it incurable.
Nevertheless, the challenge lies in the feature loss in various
tiny tumors or organs after deep convolutions, making the task
of medical image segmentation based on artificial intelligence
highly demanding.

Recent state-of-the-art methods [2]–[8] are primarily based
on Convolutional Neural Networks (CNNs), which achieve
impressive results but exhibit limitations in capturing features
of small objects. To address this issue, several recent stud-
ies [9], [10] have employed multi-attention mechanisms in
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feature maps. However, the results are still suboptimal, and
the various attention mechanisms do not integrate well.

In this paper, we aim to leverage the capability of multi-
attention fusion in feature maps at multiple scales to capture
in-depth image details. Accordingly, we present SMAFormer,
a Transformer-based architectural design that is both effective
and computationally efficient for medical image segmentation
tasks. Drawing inspiration from the ResUNet framework [11],
our SMAFormer model unites Transformer blocks with a U-
shaped residual structure to enhance feature learning across
multiple resolutions.

First, we propose the Synergistic Multi-Attention (SMA)
Transformer block, which conducts pixel-wise self-attention
and integrates features from channel-wise and spatial attention
within its feed-forward pathway. Recognizing the importance
of capturing extensive global dependencies in hierarchical
feature representations, we draw inspiration from recent liter-
ature [12], [13] to design a learnable multi-scale segmentation
modulator. This modulator, embedded as a multi-scale spatial
bias, is pivotal for preserving salient features across varying
scales in both encoding and decoding stages. Specifically,
additional self-adaptive bias is incorporated within each SMA
block to facilitate optimal fusion when multiple attention
types are merged. Consequently, our straightforward residual
U-shaped Transformer design, without elaborate multi-scale
architectures [14], [15] or sophisticated loss strategies [16],
[17], attains leading performance in diverse medical image
segmentation challenges. Notably, in tumor segmentation,
SMAFormer surpasses the prior state-of-the-art model, Swin
UNETR [7], achieving improvements of 1.63% and 2.18%
in dice score coefficient on the LiTS2017 and ISICDM2019
datasets, respectively.

The main contributions of this paper are as follows:
1) We propose SMAFormer, a residual U-shaped Trans-

former model designed for diverse medical image seg-
mentation tasks. SMAFormer integrates the attention
mechanism, U-shaped architecture, and residual connec-
tions, resulting in a model that is both efficient and
effective.

https://github.com/lzeeorno/SMAFormer


2) We design an embeddable and learnable segmentation
modulator to fuse multi-scale features. This module sig-
nificantly enhances the cooperative effect among diverse
attention mechanisms.

3) Extensive experiments demonstrate that the proposed
SMAFormer achieves new state-of-the-art results on
various medical image segmentation datasets.

II. RELATED WORK

A. Medical Image Segmentation

Medical image segmentation constitutes the division of
structures or tissues within medical images into distinct re-
gions or objects. Among the various methodologies, the U-
Net architecture [18] has attained prominence due to its
sophisticated design and capacity for precise detail extraction
while preserving contextual information. This has prompted
a proliferation of innovative derivatives, with ResUNet [11]
emerging as a prominent adaptation, integrating the strengths
of U-Net [18] and ResNet [19].

ResNet’s introduction of residual connections [20] revo-
lutionized deep learning by mitigating the vanishing gra-
dient problem, facilitating the training of deeper networks
through uninterrupted information flow across layers [21].
This residual learning framework significantly enhances image
segmentation capabilities.

The synergy of residual connections and skip connections
in ResUNet constructs a highly efficient segmentation model,
where the former ensures unimpeded information transfer
and the latter facilitates comprehensive feature integration.
This combination propels ResUNet to excel in diverse image
segmentation challenges. While U-Net effectively recovers
spatial information through upsampling and expands recep-
tive fields via downsampling, it initially lacked inter-layer
communication. To overcome this, UNet++ [22] innovated
by introducing intermediary nodes with feature concatenation-
based long connections, thereby enhancing intra-layer infor-
mation sharing. Reflecting these advancements, SMAFormer
also embraces fundamental yet potent designs, including skip
connections and residual connections, to optimize segmenta-
tion performance.

B. Vision Transformer

Transformer-based network structures, unlike the design of
CNNs, excel at capturing long-range dependencies in im-
ages through global self-attention mechanisms. The pioneering
work of Vision Transformer (ViT) [23] has demonstrated supe-
rior performance compared to state-of-the-art CNNs in image
classification. Moreover, transformers have gained significant
traction in medical imaging applications due to their robust
feature extraction capabilities, as exemplified by the Swin
Transformer [24]. Researchers have also explored the fusion
of ResNet and transformer models, resulting in powerful
architectures such as ResT [25], [26]. In the context of U-Net,
incorporating attention units [27] enables the network to focus
on segmenting multiple objects, leading to the integration
of attention mechanisms into U-Net architectures and the

creation of U-shaped transformers. Chen et al. [5] propose
TransUNet to explore the potential of transformers in medical
image segmentation. The overall architecture of TransUNet
employs a convolutional network as a feature extractor and
a transformer to encode global context. However, a common
issue with TransUNet and similar works [4], [28] is that the
advantages provided by the transformer component are not
fully exploited, and although various attention mechanisms
have been combined, their integration remains suboptimal. To
address this, we have designed a general residual U-shaped
Transformer-based structure, which has been proven to be
efficient and effective for attention fusion, aiming to enhance
performance in medical image segmentation.

III. METHOD

This section details the architecture and functionality of
SMAFormer, a novel Transformer-based network designed
for medical image segmentation. We begin by outlining the
overall pipeline of the network, followed by a comprehensive
description of the SMA Transformer block, the fundamental
building block of SMAFormer. Finally, we elaborate on the
role of the multi-scale segmentation modulator in facilitating
synergistic multi-attention and enhancing the network’s ability
to capture fine-grained details.

A. Overall Pipeline

SMAFormer, as depicted in Figure 1, adopts a hierar-
chical U-shaped architecture reminiscent of ResU-Net [29],
[30], incorporating skip-connections and residual connections
between the encoder and decoder for efficient information
propagation.

Given a 3D medical image I ∈ R3×H×W , SMAFormer first
extracts low-level features through an initial projection layer
comprising a 3×3 convolution followed by a ReLU activation.
The extracted features are then passed through a four-stage
encoder, mirroring the U-Net structure. Each encoder stage
consists of a stack of SMA Transformer blocks (detailed in
Section III-B) for capturing multi-scale features, followed by
a down-sampling layer.

The down-sampling layer performs two crucial operations.
First, it records positional information within the embedded
modulator (discussed in Section III-C). Second, it utilizes
a residual convolution block which consist by three 3 × 3
convolutions with a stride of 2 to reduce the spatial dimensions
of the feature maps while increasing the channel count. This
down-sampling process is enriched by residual connections,
enabling the preservation of long-range dependencies. Specif-
ically, given an input feature map Xi ∈ RC×H×W , the output
of the i-th encoder stage is Xconv + Xresidual ∈ R2iC× H

2i
×W

2i ,
where Xconv denotes the convolved features and Xresidual
represents the features from the residual connection.

Mirroring the encoder, the decoder comprises four sym-
metrical stages. Each stage begins with a 2 × 2 transposed
convolution to upsample the feature maps, effectively halv-
ing the channel count and doubling the spatial dimensions.
Subsequently, the upsampled features are concatenated with
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Fig. 1. This figure provides an overview of the SMAFormer architecture. The figure details (a) the SMA Transformer block, (b) the SMA Part within the
SMA Transformer block, and (c) the E-MLP Part within the SMA Transformer block.

the corresponding encoder features via skip connections, fa-
cilitating the fusion of high-level semantic information with
low-level spatial details. Finally, an output convolution layer
processes the concatenated features to generate the segmenta-
tion prediction.

B. SMA Transformer Block

Directly applying conventional Transformers to medical
image segmentation presents two significant challenges: (1)
Difficulty in Assigning Attention to Relevant Regions:
Transformers, especially when not fine-tuned for medical
images, often struggle to focus attention on medically relevant
regions, hindering their performance in multi-organ or multi-
tumor segmentation tasks. (2) Limited Capture of Local
Context: Local context plays a crucial role in accurately
segmenting small structures like organs or tumors. Traditional
Transformers, with their global receptive fields, often fail to
adequately capture this local information.

To address these challenges, we introduce the Synergistic
Multi-Attention (SMA) Transformer block, illustrated in Fig-
ure 1. This block leverages the combined strengths of three
distinct attention mechanisms and multi-head self-attention to
achieve robust and accurate segmentation.

1) Synergistic Multi-Attention (SMA): Unlike approaches
that restrict self-attention within local windows [30], SMA em-
ploys a combination of channel attention, spatial attention, and
pixel attention in conjunction with multi-head self-attention.
This synergistic approach enables the model to effectively
capture multi-scale features and handle potential deformations
within the medical images as depicted in Figure 1 (b). Given
a feature map X ∈ RC×H×W , SMA first divides it into
patches and flattens the channels. The flattened features are

then processed by the three attention mechanisms (channel
attention, pixel attention, and spatial attention) in parallel.
The outputs from the pixel and channel attention branches are
combined through matrix multiplication and further processed
by the spatial attention branch. Finally, the outputs from all
three branches are fused to generate the final attention map.

2) Enhanced Multi-Layer Perceptron (E-MLP): Recogniz-
ing the limitations of standard Feed-Forward Networks (FFNs)
in capturing local context [31], [32], we enhance the E-MLP
within our Transformer block by incorporating depth-wise and
pixel-wise convolutions [33]–[35]. As depicted in Figure 1
(c), the E-MLP first projects the input tokens to a higher
dimensional space using a linear layer. The projected tokens
are then reshaped into 2D feature maps and processed by a
3× 3 pixel-wise convolution followed by a 3× 3 depth-wise
convolution, effectively capturing local contextual information.
The resulting features are then reshaped back into tokens and
projected back to the original channel dimension using another
linear layer. Finally, a GELU activation function [36] is applied
to introduce non-linearity.

Mathematically, the computation within an SMA Trans-
former block can be expressed as:

X ′
i+1 = SMA(LN(Xi)) +Xi,

Xi+1 = E −MLP (LN(X ′
i+1)) +X ′

i+1,
(1)

where Xi represents the input features to the i-th block, X ′
i+1

and Xi+1 are the outputs of the SMA and E-MLP modules
respectively, and LN denotes layer normalization.

The synergistic interplay between SMA and E-MLP within
each Transformer block enables SMAFormer to effectively
capture both global and local contextual information, leading
to improved segmentation performance.
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Fig. 2. This figure presents a schematic diagram of the proposed modulator.

To further enhance SMAFormer’s ability to capture fine-
grained details and facilitate synergistic multi-attention, we
introduce the multi-scale segmentation modulator as shown in
Figure 2.

Positioned at each scale of the network, the modulator
serves three primary functions:

1) Positional Encoding: The modulator embeds positional
information into the feature maps, compensating for the
lack of inherent positional awareness in the Transformer
architecture. This is achieved through a projection con-
volution layer that maps the multi-scale SMA outputs
from the shape [B,H,W,C] to the MSA output with
shape [B,H ×W,C].

2) Trainable Bias: The modulator incorporates a trainable
bias term, which is added to the output of the multi-head
self-attention mechanism. This bias term, updated during
training, helps fine-tune the attention maps and improves
the model’s ability to focus on relevant regions.

3) Facilitating Multi-Attention Computations: The mod-
ulator assists in performing the necessary transpositions
and matrix multiplications required for the three differ-
ent attention mechanisms within the SMA block. This
ensures efficient computation and seamless integration
of the multi-attention module within the overall archi-
tecture.

D. Objective Function

We train SMAFormer using the BCE Dice loss LBD [37],
a widely adopted loss function for segmentation tasks that
combines the benefits of Binary Cross-Entropy (BCE) loss
LBCE and Dice loss LD:

LBD =LD + LBCE(y, p)

=
1

N

N∑
i=1

(
1−

2
∑

j yi,jpi,j∑
j yi,j +

∑
j pi,j

)
− (y log(p) + (1− y) log(1− p)),

(2)

where y represents the ground truth segmentation mask, p
denotes the predicted segmentation mask, and N is the number
of pixels in the image. The BCE loss penalizes discrepancies
between the predicted and true label distributions, while the
Dice loss encourages overlap between the predicted and true
segmentation regions. This combined loss function encourages
both accurate pixel-wise classification and strong boundary
delineation.

IV. EXPERIMENTS

This section details the experimental setup and presents the
results obtained. We first describe the datasets used and the
evaluation metrics employed. Next, we compare the perfor-
mance of SMAFormer against several state-of-the-art methods
on medical image segmentation tasks. Finally, we conduct
ablation studies to analyze the contribution of each component
within our proposed SMAFormer architecture.

A. Datasets and Implementation Details

To ensure a comprehensive evaluation and fair comparison
with existing methods, we conducted experiments on three
publicly available medical image segmentation datasets:

1) LiTS2017 [39]: This dataset focuses on liver tumor
segmentation and comprises 131 contrast-enhanced 3D
abdominal CT scans.

2) ISICDM2019 [40]: This dataset centers on bladder
tumor segmentation and includes 2200 bladder cancer
images.

3) Synapse [41]: This dataset targets multi-organ segmen-
tation and consists of 40 3D abdominal CT scans with
multiple organs.

For all experiments, we followed the training/validation/test
splits provided by nnformer [6] to ensure consistency and
fair comparison with other methods. This resulted in a split
of 80%, 15%, and 5% for training, validation, and testing,
respectively. All input images were resized to a resolution of
512× 512 pixels.

We implemented SMAFormer using the PyTorch framework
and trained the model on a single NVIDIA GeForce RTX
4090 GPU. We employed the Stochastic Gradient Descent
(SGD) optimizer [42] with a momentum of 0.98 and weight
decay of 1e−6. The learning rate was initially set to 1e−2

and decreased using a cosine decay strategy to a minimum
of 6e−6. Data augmentation during training included random
horizontal flipping and rotation.



TABLE I
COMPARISON WITH STATE-OF-THE-ART MODELS ON THE ISICDM2019 AND LITS2017 DATASETS. THE BEST RESULTS ARE BOLDED WHILE THE

SECOND BEST ARE UNDERLINED.

Method
ISIDM2019 LITS2017

Average Bladder Tumor Average Bladder Tumor

DSC(%) ↑ mIoU(%) ↑ DSC(%) ↑ DSC(%) ↑ DSC(%) ↑ mIoU(%) ↑ DSC(%) ↑ DSC(%) ↑

ViT [23]+CUP [5] 88.60 84.40 91.88 85.32 80.33 77.25 83.97 76.69
R50-ViT [23]+CUP [5] 88.77 85.62 92.05 85.49 82.62 79.68 85.83 79.41

ResUNet++ [29] 87.11 83.78 89.90 84.32 75.73 74.19 79.12 72.34
ResT-V2-B [26] 89.26 82.13 93.01 85.50 78.53 75.24 81.22 75.83
TransUNet [5] 94.56 93.60 97.74 91.38 93.28 90.81 95.54 91.03
SwinUNet [3] 91.95 89.77 94.73 89.17 89.68 86.62 93.31 86.04

Swin UNETR [7] 92.60 90.61 95.08 90.12 91.95 90.02 94.73 89.17
UNETR [38] 91.55 88.34 94.83 88.26 89.38 87.46 92.89 85.86
nnFormer [6] 93.54 89.11 96.97 90.41 91.74 89.95 94.57 88.91

SMAFormer(Ours) 96.07 94.67 98.57 93.56 94.11 91.94 95.88 92.34

We use a pre-trained model from [43]. The results of
experiment are the mean of Five-Fold Cross-Validation. Part
of results from [6] and [44].

B. Evaluation Metrics

We evaluated the segmentation performance using two
widely adopted metrics:

Dice Coefficient Score (DSC) [46]: DSC measures the
overlap between the predicted segmentation and the ground
truth. It ranges from 0 to 1, with higher values indicating better
segmentation performance.

DSC =
2× |P ∩G|
|P |+ |G|

, (3)

where P represents the predicted segmentation. G represents
the ground truth segmentation. |P ∩G| represents the number
of pixels in the intersection of the predicted and ground truth
segmentations. |P | represents the number of pixels in the
predicted segmentation. |G| represents the number of pixels
in the ground truth segmentation.

Mean Intersection over Union (mIoU): mIoU calculates
the average ratio of intersection over the union between the
predicted segmentation and the ground truth across all classes.
The mIoU ranges from 0 to 1, with higher values indicating
better segmentation performance.

mIoU =
1

C

C∑
i=1

|Pi ∩Gi|
|Pi|+ |Gi| − |Pi ∩Gi|

, (4)

where C represents the number of classes. Pi represents the
predicted segmentation for class i. Gi represents the ground
truth segmentation for class i.

C. Comparisons with State-of-the-Art Methods

This subsection provides a detailed analysis of
SMAFormer’s performance compared to state-of-the-art
methods on three medical image segmentation datasets:
LiTS2017, ISICDM2019, and Synapse. The results are
summarized in Table I and II.

1) Liver Tumor Segmentation: The results are presented
in Table I. SMAFormer demonstrates superior performance,
achieving an average DSC of 94.11% and a mean IoU
of 91.94%. This surpasses the performance of all other
methods compared, including TransUNet (DSC: 93.28%,
mIoU: 90.81%). This substantial improvement highlights
SMAFormer’s effectiveness in segmenting small and irregu-
larly shaped tumors. This can be attributed to the synergistic
multi-attention mechanism’s ability to capture both local and
global features, as well as the feature fusion modulator’s role
in preserving crucial information across different scales.

2) Bladder Tumor Segmentation: The results can be found
in Table I. SMAFormer again exhibits superior performance
on this dataset, achieving an average DSC of 96.07% and
a mean IoU of 94.67%. Although it only achieved limited
improvement in terms of average value of bladder segmen-
tation results, it improved the Dice coefficient by 2.18% on
average in the experimental results of tumor segmentation
compared to the second best model. The significant margin of
improvement over existing methods showcases SMAFormer’s
capability to accurately delineate bladder tumor boundaries,
even in challenging medical images. This can be attributed to
the enhanced multi-layer perceptron (E-MLP) within the SMA
Transformer block, which effectively captures local contextual
information crucial for precise segmentation. SMAFormer’s
performance on this dataset further demonstrates its robustness
and generalizability across different medical image modalities.

3) Multi-Organ Segmentation: The results can be found in
Table II. As the task difficulty increases, SMAFormer’s perfor-
mance slightly lags behind the comparison model in a few met-
rics. However, considering the overall average across multiple
experiments, SMAFormer still achieves state-of-the-art results
on the Synapse multi-organ segmentation dataset. Moreover,
The best results were notably achieved by SMAFormer on
some smaller organs. Additionally, it is worth mentioning that
the Modulator retains some biases and weights from previ-
ous liver experiments, resulting in significantly better liver
indices compared to other models. SMAFormer outperforms
all other methods in terms of average DSC (86.08%) and



TABLE II
COMPARISON WITH STATE-OF-THE-ART MODELS ON THE SYNAPSE MULTI-ORGAN DATASET. THE BEST RESULTS ARE BOLDED WHILE THE SECOND

BEST ARE UNDERLINED.

Model Average Aotra Gallbladder Kidney(Left) Kidney(Right) Liver Pancreas Spleen Stomach
DSC(%)↑ DSC(%)↑ DSC(%)↑ DSC(%)↑ DSC(%)↑ DSC(%)↑ DSC(%)↑ DSC(%)↑ DSC(%)↑

ViT [23]+CUP [5] 67.86 70.19 45.10 74.70 67.40 91.32 42.00 81.75 70.44
R50-ViT [23]+CUP [5] 71.29 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

TransUNet [5] 84.36 90.68 71.99 86.04 83.71 95.54 73.96 88.80 84.20
SwinUNet [3] 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
UNETR [38] 79.56 89.99 60.56 85.66 84.80 94.46 59.25 87.81 73.99

Swin UNETR [7] 73.51 82.94 60.96 80.41 71.14 91.55 56.71 77.46 66.94
CoTr [45] 85.72 92.96 71.09 85.70 85.71 96.88 81.28 90.44 81.74

nnFormer [6] 85.32 90.72 71.67 85.60 87.02 96.28 82.28 87.30 81.69

SMAFormer(Ours) 86.08 92.13 72.03 86.97 88.60 97.71 81.93 91.77 84.15

achieves the highest DSC scores for five out of the eight
organs. SMAFormer’s strong performance on this challenging
dataset underscores its potential for broader applicability in
various multi-organ segmentation tasks. This consistent per-
formance across multiple organs highlights the effectiveness
of SMAFormer’s U-shaped architecture and skip connections
in preserving both high-level semantic information and low-
level spatial details. In summary, SMAFormer consistently
outperforms existing state-of-the-art methods across diverse
medical image segmentation tasks. Its superior performance
can be attributed to the synergistic combination of its novel
components: the SMA Transformer block, the feature fusion
modulator, and the enhanced multi-layer perceptron. These
results demonstrate SMAFormer’s potential as a powerful
and versatile tool for advancing the field of medical image
segmentation.

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Liver Tumor

GT

SMAFormer

TransUNet

SMAFormer
3D Prediction

Swin UNETR

Fig. 3. LiTS2017 Prediction Result.

D. Visualization of Segmentation Results

To provide a qualitative assessment of SMAFormer’s seg-
mentation capabilities, we present visual comparisons against

other state-of-the-art methods on all three datasets. Figure 3
showcases segmentation results on representative slices from
the LiTS2017 dataset. SMAFormer demonstrates superior per-
formance in segmenting both the liver and tumor boundaries
compared to other methods. A close examination of the
enlarged image in the upper left corner of each case reveals
that the green color representing the tumor in the comparison
model result figure disappears when the tumor is very small
or there are multiple tumors. This occurs because even some
advanced models may lose information after multiple layers
of convolution. In contrast, SMAFormer accurately retains this
crucial information after multiple layers of network training.
SMAFormer accurately segments small tumor nodules in the
liver periphery, which other methods struggle with.
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Fig. 4. ISICDM2019 Prediction Result.

Figure 4 illustrates segmentation outputs on challenging
cases from the ISICDM2019 dataset. Although small tumors
have irregular shapes and indistinct boundaries, the segmen-
tation results from SMAFormer are noticeably closer to the
ground truth compared to other methods.

Figure 5 presents segmentation results on the Synapse
dataset, focusing on different abdominal organs. SMAFormer
consistently produces accurate segmentations across various
organs, demonstrating its robustness and generalization ability.
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Fig. 5. Synapse Prediction Result.

SMAFormer accurately delineates the pancreas, a notoriously
challenging organ to segment due to its variable shape and
proximity to other organs.

E. Ablation Study

This subsection presents an ablation study to assess the
impact of each component within SMAFormer. We conducted
experiments on the ISICDM2019 and LiTS2017 datasets, us-
ing the same experimental setup as described in Section IV-A.
Table III presents the results, highlighting the contribution of
each component to the overall performance.

TABLE III
ABLATION STUDY OF DIFFERENT MODULES IN SMAFORMER.

SMA E-MLP Modulator ISICDM2019 LiTS2017
Average DSC ↑ Average DSC ↑

✓ ✗ ✗ 82.28% 79.95%
✗ ✓ ✗ 80.54% 75.67%
✗ ✗ ✓ 78.41% 73.20%
✓ ✓ ✗ 89.53% 88.47%
✓ ✗ ✓ 86.31% 84.26%
✓ ✓ ✓ 96.07% 94.61%

Effectiveness of SMA: To evaluate the effectiveness of the
proposed SMA block, we replaced it with a standard Trans-
former block equipped with only multi-head self-attention.
As evident from Table III this modification resulted in a
performance drop across both datasets. This decline signifies
the importance of integrating channel, spatial, and pixel at-
tention for capturing comprehensive feature representations in
medical images. The synergistic interplay of these attention
mechanisms within the SMA block allows for a more nu-
anced understanding of the input data, leading to improved
segmentation accuracy.

Impact of E-MLP: We investigated the contribution of the
E-MLP module. We replaced the E-MLP with a standard FFN
commonly used in Transformer architectures. This substitution
led to a decrease in performance, as shown in Table III.

This outcome underscores the value of incorporating depth-
wise and pixel-wise convolutions within the E-MLP. These
convolutions enhance the model’s ability to capture local
context, crucial for accurately delineating the boundaries of
small structures like tumors.

Contribution of Multi-Scale Segmentation Modulator:
We examined the role of the multi-scale segmentation modu-
lator. Removing this modulator from the SMAFormer archi-
tecture resulted in a noticeable performance degradation. This
observation confirms the modulator’s significance in facilitat-
ing synergistic multi-attention and enhancing the network’s
ability to capture fine-grained details. By embedding positional
information, providing a trainable bias term, and streamlining
multi-attention computations, the modulator contributes sig-
nificantly to the overall efficacy of the SMAFormer model.

In summary, the ablation study demonstrates that each com-
ponent of SMAFormer contributes to its superior performance
in medical image segmentation. The synergistic multi-attention
block, enhanced multi-layer perceptron, and multi-scale seg-
mentation modulator work in concert to enable accurate and
efficient segmentation of challenging medical images.

V. CONCLUSION

In this paper, we presented SMAFormer, a novel
Transformer-based architecture designed for efficient and ac-
curate medical image segmentation. The key innovation lies
in the Synergistic Multi-Attention (SMA) block, which effec-
tively integrates pixel, channel, and spatial attention mecha-
nisms to capture both local and global contextual information.
This synergistic approach addresses the limitations of conven-
tional Transformers in accurately segmenting small and irreg-
ularly shaped tumors and organs commonly found in medical
images. Furthermore, the introduction of a multi-scale segmen-
tation modulator enhances SMAFormer’s ability to preserve
salient features across different scales and further facilitates
the synergistic interplay between the multiple attention mech-
anisms. Extensive experiments conducted on three publicly
available medical image segmentation datasets demonstrate
that SMAFormer achieves state-of-the-art performance, sur-
passing existing methods in accurately segmenting various
organs and tumors. The promising results obtained in this
study highlight the potential of SMAFormer as a robust and
effective tool for assisting medical professionals in diagnosis,
treatment planning, and disease monitoring. Future research
will focus on exploring the application of SMAFormer to other
medical imaging modalities and investigating its performance
in more challenging clinical settings.
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